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Abstract

The laws of various transport modesÐviscous ¯ow, di�usion and Knudsen ¯owÐcan be caused by the gradients
of concentration, total and partial pressure. Their combined transports are derived and proved by selected
experiments in the continuum as well as in the Knudsen region. The combination of these transport modes leads to

phenomena like pressure di�usion, slip ¯ow and di�usive slip. The three transport coe�cientsÐthe permeability, the
binary di�usion coe�cient and the Knudsen coe�cientÐcan be determined by steady-state permeability and
di�usion measurements. Nonsteady-state measurements deliver additional information about the pore structure of

the porous medium. The presented measurements were carried out at cylindrical samples of rock salt with low
porosity. Hydrogen and nitrogen were used as nonadsorbing gases. The binary di�usion experiments con®rm
Graham's law with good accuracy. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

When isothermal conditions are assumedÐT is the

constantÐin the pores of the porous medium the mass

transfer can take place by viscous ¯ow, Knudsen ¯ow

or ordinary di�usion. A transport of adsorbed mol-

ecules or atoms on solid surfacesÐcalled surface dif-

fusionÐshould be neglected. In the continuum region

the mean free path of the gas is small compared with

the pore diameter. Here molecule-molecule collisions

predominate over molecule-wall collisions. The

Knudsen number, the ratio of the mean free path of

the gas to the pore diameter (Kn=l/dpore), is less than

1 (Kn<<1). In a single gas a gradient of total pressure

Hp1) leads to a viscous ¯ow. The ¯ux can be described

by Darcy's law [1]. In the Knudsen region the mean

free path of the gas is large relative to the pore diam-

eter (Kn > 1). Molecule-wall collisions predominate

over molecule-molecule collisions [2]. The mass trans-

port due to a pressure gradient can be described by

Knudsen's law.

If the mean free path is small compared with the

pore diameter (continuum region), in a gas mixture a

concentration gradient Hyi leads to a mass transfer due

to ordinary di�usion. If a gradient of total pressure

additionally exists, the ¯uxes due to viscous ¯ow must

be added to the di�usive ¯uxes. The di�usive ¯uxes of

a multicomponent mixture can be described by the

Stephan±Maxwell equations. The di�usive ¯uxes of a

binary mixture can be described by Fick's ®rst law of

di�usion, a special case of the Stephan±Maxwell

equations and the viscous ¯uxes by Darcy's law. The

viscous component of the ¯ow is nonseparative. In the

Knudsen region a gradient of concentration Hyi and

total pressure Hp leads to a mass transfer due to

Knudsen ¯ow. Here is no fundamental distinction

between ¯ow and di�usion and the molecules act
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entirely independently of each other. The ¯uxes are

proportional to the gradient of the partial pressure of

each component Hpi. Often Fick's ®rst law is formed

with the gradient of the partial pressure, too. We have

to discuss whether Fick's ®rst law of di�usion is re-

lated to the gradient of the partial pressure Hpi or to

the gradient of the concentration Hyi. This is not of

any importance in case of a vanishing pressure gradi-

ent (Hp 1 0), however it is a basic problem in case of

simultaneously existing di�usion and viscous ¯ow.

Additionally it should be discussed, whether in a gas

mixture, which consists of two species with di�erent

molecular weights (M1$M2), the ratio of the di�usion

¯uxes obeys Fick's law (0M2/M1) or Graham's law

�0
����������������
M1=M2

p
� [4] and under which conditions equi-

molar countercurrent di�usion can be assumed

(v _N1,difv=v _N2,difv).
Special attention should be paid to the e�ects, which

occur in the case of the combination of the various

transport mechanisms: slip ¯ow, di�usive slip and

pressure di�usion. They only reach importance in the

transition region (0.01 < Kn< 1) (Fig. 1). The di�er-

ent transport mechanisms are caused by di�erent e�ec-

tive gradientsÐHp, Hpi and Hyi. A direct addition is

not automatically admissible.

The work `The Dusty-Gas Model' from Meason and

Malinauskas [10] gives a comprehensive survey of the

gas transport in porous media. But the work cannot

answer all the above asked questions. With regard to

the combination of ordinary and pressure di�usion

with viscous ¯ow and Knudsen ¯ow unanswered ques-

tions remain. For example in [10], Eq. (5), the di�usive

¯ux is formed with the gradient of the molar concen-

tration rni � r� pi=kBT �0rpi, which is certainly cor-

rect in case of constant pressure (Hp = 0). Ordinary

Nomenclature

c molar density [kmol/m3]
dpore pore diameter [m]
D e�ective di�usion coe�cient [m2/s]

J
.

molar ¯ux relative to the mass-average vel-
ocity [kmol/(m2 s)]

k true permeability [m2]

L length of the sample [m]
M molecular weight [kg/kmol]
_N molar ¯ux relative to stationary coordinates

[kmol/(m2 s)]
p pressure [bar]
pi partial pressure of component i [bar]
R gas constant [J/(kmol K)]

t time [s, h]
T temperature [K]
_V ¯ow rate [m3/s, ml/min]

Va volume of the vessel installed at the end of
the sample [m3, ml]

y mole fraction

Greek letters

a separation factor

d di�usion coe�cient in the free space [m2/s]
L mean free path of the gas
Ep porosity

Ea accessible porosity
Z dynamic viscosity [Pa s]
mi ratio of relative mole masses, (M12ÿMi )/M12

mp tortuosity factor
r mass density [kg/m3]

Indices
i, 1, 2 components

dif ¯ux due to ordinary di�usion
D combined ¯ux due to ordinary di�usion and

Knudsen ¯ow

kn Knudsen
vis viscous

Superscripts
p ¯ux due to a gradient of pressure

y ¯ux due to a gradient of mole fraction

Fig. 1. Mass transport in the gas phase.

W. Kast, C.-R. Hohenthanner / Int. J. Heat Mass Transfer 43 (2000) 807±823808



and Knudsen di�usion occur in series and at uniform
pressure their combination is easily possible in this

manner. This re¯ection fails in case of an additional
pressure gradient (Hp$0), Eqs. (25)±(32) in [10]. This
is comprehensible when imagining that in a ¯owing

gas mixture due to a pressure gradient Hp the compo-
sition has to be constant, if therein is not any concen-
tration gradient Hyi=0. But in the case of Hyi=0 and

Hp$0 the gradient of the partial pressure are not zero
( pi$0). A di�usive ¯ux should occur after this deri-
vation. In [10], Eq. (60), this statement of the di�usive

¯ux is justi®ed by the e�ect of pressure di�usion.
However there is a simpli®cation that is not compre-
hensible: the dependence of the pressure di�usion from
the molecular weights (M12ÿMi )/M12 is neglected. It

will be shown that this assumption is justi®ed in many
cases, however in some cases the in¯uence of the mol-
ecular weights is directly provable. The correct con-

sideration of pressure di�usion and the combination of
ordinary and pressure di�usion with Knudsen ¯ow
leads to more complex dependencies of the molecular

weights and the gradients of the various ¯uxes as
shown in [10], Eq. (63) and (120). The transport
phenomena have already been investigated in detail by

Wicke et al. [5±9,24]. Until today these works have
only recently been taken into account for technical ap-
plications. For use of microporous substances e.g. in
adsorption techniques for gas puri®cation or for use of

waste disposal in salt mines, where radioactive gas
components could permeate and di�use through the
porous rock salt, more detailed knowledge about the

mass transport in porous media are demanded in order
to enable safe drafts. For these purposes the presented
work should give a comprehensive summary with

regard to technical applications.
However until today we have not known any model

to describe under consideration of the reciprocal e�ects
stated above between the transport mechanisms, with

chemical potential as the only driving force. Finally all
e�orts to describe the mass transport by means of
models must be considered as approximation to the

complex facts, including the presented paper.
In the presented paper the theoretical derivations are

illustrated and con®rmed by selected permeability and

di�usion measurements. They are taken from a work
where the permeability and di�usion behavior of
hydrogen and nitrogen was investigated in core

samples of rock salt [3].

2. Mass transfer of a single gas through porous media

The isothermal mass transport in a single gas takes

place only by a pressure gradient Hp. The ¯ow rate
through the porous medium due to the pressure gradi-
ent can be described by Darcy's law:

_Nvis � ÿkZcrp �1�

where the gravity was neglected. The permeability only
depends on the pore structure of the porous medium.

Under consideration of an ideal gas and the following
boundary conditions p�z � 0� � pe; p�z � L� � pa the
integration gives

_Nvis � k

Z
1

RT

p2e ÿ p2a
2L

� k

Z
�p

RT

Dp
L

with

�p � pe � pa

2
:

�2�

In the continuum region the ¯ow through the pores of

the porous medium can be assumed as laminar, which
is justi®ed under consideration of the dimensions of
the pores. Darcy's law has the same form like the

Poiseuille's law for laminar ¯ow in a cylindrical tube.
The following expression of the ¯ow rate through a
porous media can be found by applying Poiseuille's

law:

_Nvis � ÿ Ep

mp, vis

�d
2

pore

32Z
crp �3�

where d
-
pore describes a mean pore diameter and Ep the

porosity, which only takes into account the volume of
the pores that go from one face of the porous medium

right through to the other. The tortuosity factor mp,vis
takes account of the additional drag by the irregular
shape and the actual length of the pores in comparison

with a bundle of straight, parallel capillaries with con-
stant diameter. The tortuosity factor mp can be divided
into a path elongation factor mL and a shape factor mF
(mp=mLm

2
F). This fact should not be discussed in detail

here. From the Poiseuille's law and Darcy's law the
following relation of the permeability to the pore di-
ameter can be found:

k � Ep

mp, vis

�d
2

pore

32Z
: �4�

2.1. Knudsen or free-molecule ¯ow

In the Knudsen region (Kn > 1) the mass transfer of
a gas occurs due to free-molecule ¯ow [2]:

_Nkn � ÿ4
3

�dpore

Ep

mp, kn

�������������������
1

2pRTM

r
rp �5�

where Ep describes again the porosity and mp,kn the tor-

tuosity factor, which however di�ers from the tortu-
osity factor mp, vis [11]. It is possible to introduce an
e�ective Knudsen coe�cient Dkn:
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_Nkn � ÿDkn

RT
rp �6�

with

Dkn � 4

3
�dpore

Ep

mp, kn

�����������
RT

2pM

r
: �7�

2.2. Transition region

In the transition region (0.01 < Kn < 1) the ¯ux
through a porous medium due to a pressure gradient
can be described as the sum of the ¯uxes due to vis-

cous ¯ow and due to Knudsen ¯ow [2]. The part of
the Knudsen ¯ow is called `viscous slip' or `slip ¯ow',
because the velocity at the solid walls is not zero.

Considering the Eqs. (1), (3) and (6) the ¯ux can be
calculated:

_N � _Nvis � _Nkn � ÿ
�
k

Z
p�Dkn

�
1

RT
rp: �8�

For analysis and evaluation of the measurements an
apparent permeability ka should be introduced2

_N � ka

Z
�p

RT
rp �9�

ka � k

�
1� DknZ

k �p

�
�10�

The apparent permeability is a linear function of the
reciprocal mean pressure (Fig. 2). The part of slip ¯ow

is also called Klinkenberg-part [12]. This part is for
hydrogen greater than for nitrogen, because for a
given mean pressure the mean free path of hydrogen is

greater than for nitrogen. Hence the slope of the
apparent permeability vs. the reciprocal mean pressure
is steeper for hydrogen than for nitrogen as used gas.

The Knudsen coe�cient was introduced as a press-
ure independent value. However at very low pressure
Knudsen [12] found a weak pressure dependence, that
can be neglected in nearly all technical applications.

The apparent permeability ka extrapolated to in®nite
pressure ( p-ÿ1=0) gives the true permeability, which
only depends on the pore structure of the porous

medium. With the knowledge of the viscosity of the
used gas the Knudsen coe�cient is obtained from the
slope of the apparent permeability. With use of a sec-

ond gas, e.g. hydrogen instead of nitrogen, the
measured values of the true permeability and of the
Knudsen coe�cient can be con®rmed. The Knudsen

coe�cients of two gases behave inversely proportional
to the square root of the molecular weight ratio:

Dkn, 1

Dkn, 2
�

��������
M2

M1

r
: �11�

2.3. Nonsteady-state permeability measurements

The goal of the nonsteady-state methods is the de-

Fig. 2. Apparent permeability of hydrogen and nitrogen.

2 Instead of the apparent permeability ka acc. to Eq. (10) an

apparent permeability coe�cient K � �pka=Z � �pk=Z�Dkn is

also possible [10], whose application vs the mean pressure p- is

a straight line of equivalent meaning.
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termination of the accessible porosity, the ratio of the

accessible void space inside the porous medium, that

can be reached from the external surface, to the total

volume of the porous medium [13]. The accessible

porosity is normally smaller than the total porosity of

a system, because the total porosity contains all parts

of the void space, regardless of whether they can be

reached. At time t= 0 the pressure in front of the

upstream end face of the core sample is suddenly

increased from atmospheric pressure up to the pressure

pe and then it is maintained constant. In the open sys-

tem the pressure pa is kept at atmospheric pressure.

Some time after the pressure jump a slowly increasing

¯ow is measured at the end of the sample. After some

time the ¯ow reaches steady state (Fig. 3). In the half-

open system a closed vessel is installed at the end of

the sample. The pressure in the vessel is measured as a

function of time from tr0, Fig. 4.

Fig. 3. Volume rate of ¯ow at the end of the sample after a suddenly increased injection pressure at time t = 0 (observed and cal-

culated ¯ows at di�erent injection pressures in the open system).

Fig. 4. Pressure in a closed vessel installed at the end of the sample after a jump of the injection pressure (observed and calculated

pressures in the half-open system).
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For the determination of the accessible porosity Ea
the equation of continuity must be solved within the

sample (0 < z < L ):

Ea
@c

@ t
� ÿr _N �12�

with the following boundary conditions:
open system

p�z � 0, tr0� � pe � const:

p�z � L, tr0� � pa � const:

half-open system

p�z � 0, tr0� � pe � const:

p�z � L, t � 0� � pa � pe

@p

@ t

����
z�L
� A

Va

�
k

Z
p�Dkn

�
@p

@z

����
z�L
4pa � f �t�:

The ¯ux _N is calculated by Eq. (8), where the per-
meability k and the Knudsen coe�cient Dkn are

already known from the steady-state measurements.
Consequently in Eq. (12) the accessible porosity
remains as the only unknown. In the numerical sol-

ution the accessible porosity is chosen in the way that
measurement (symbol) well agrees with calculation
(solid line), Figs. 3 and 4. The calculated solution
reacts very sensitively to various values of the access-

ible porosity; compare solid and dashed curves.

3. Mass transport in a binary gas mixture

In a gas mixture the gradient of concentration Hyi
leads to a mass transfer due to ordinary di�usion and

Knudsen ¯ow. An additional pressure gradient Hp
leads to a mass transfer due to viscous ¯ow, Knudsen
¯ow and pressure di�usion.

3.1. Ordinary di�usion and viscous ¯ow in the
continuum region

In the continuum region (Kn< 0.01) the ¯uxes due
to di�usion and due to viscous ¯ow may be added:

_N1 � _N1, dif � _N1, vis: �13�

The reason for this additivity follows from the kinetic
theory of gases, in that there are no viscous terms in

the Stephan±Maxwell equations, and no di�usion
terms in the Navier±Stokes equations [10]. The viscous
part of the ¯ow is nonseparative. It can be described

by Darcy's law:

_N1, vis � y1 _Nvis � ÿy1 k

Z12
crp �14�

In an isothermal system the total di�usive ¯ux consists
of three contributions associated with the following
mechanical driving forces:

1. Driving force due to gradients of mole fractionsÐ
concentration di�usion.

2. Driving force due to a pressure gradientÐpressure

di�usion.
3. Driving force due to an external forceÐforced

di�usion.

The total di�usive ¯ux _N1,dif can be written as the sum
of the terms describing ordinary (concentration) di�u-
sion, pressure di�usion and forced di�usion:

_N1, dif � _N
�y�
1, dif � _N

�p�
1, dif � _N

�F�
1, dif �15�

The di�usive ¯ux due to an external force _N
�F�
1, dif , e.g.

the electric ®eld on an ion, is not considered in this
paper. The tendency for a mixture to separate under a

pressure gradient is very small, but use is made of this
e�ect in centrifuge separation in which tremendous
pressure gradients may be established. The ¯ux due to
concentration di�usion consists of two contributions: a

¯ux resulting from the di�usion superimposed on the
bulk ¯uid and a ¯ux resulting from the bulk motion
on the ¯uid:

_N
�y�
1, dif � _J

�y�
1 � y1� _N

�y�
1, dif � _N

�y�
2, dif � with

_J
�y�
1 � ÿD12cry1

_N
�y�
2, dif � _J

�y�
2 � �1ÿ y1�� _N

�y�
1, dif � _N

�y�
2, dif� with

_J
�y�
2 � ÿD12cry1

�16�

The e�ective binary di�usion coe�cient D12 comprises
the binary di�usion coe�cient d12 in the free space and
the additional resistance due to the impeding of the

transport in the porous medium by tortuosity and
porosity:

D12 � Epd12
mp, dif

: �17�

The binary di�usion coe�cient behaves reciprocally to
the pressure ( pd12=const.). It is not possible to calcu-

late both the di�usive ¯uxes from Eq. (16) without any
additional assumptions. Therefore a separation factor
shall be introduced
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a �
_N
�y�
2, dif

_N
�y�
1, dif

�18�

It must be determined from the boundary conditions
of the system or by experiment. Generally the di�usive
¯uxes can be expressed3

_N
�y�
1, dif �

ÿD12c

1ÿ y1�1� a�ry1,

_N
�y�
2, dif �

D12c

1ÿ �1ÿ y1��1� 1=a�ry1:

The following values of the separation factor are

physically found in a binary gas mixture, which is
composed of species with di�erent molecular weights
(M1$M2):
Equimolar di�usion (it can be assumed in a closed

system, when a pressure gradient can be neglected):

_N
�y�
1, dif � ÿ _N

�y�
2, dif 4a � ÿ1:

No relative mass ¯ow (Hp = 0):

_m
�y�
1, dif � ÿ _m

�y�
2, dif 4a � ÿM1=M2:

The net axial momentum transferred to the walls of
the pores by all the molecular collisions is zero:

_m�y�1, difn1 � ÿ _m�y�2, difn2 4a � ÿ
����������������
M1=M2

p
:

Di�usion through a stagnant gas ®lm:

_N
�y�
2, dif � 0 4a � 0:

In case of countercurrent di�usion in an open system
existing experimental results show according to

Graham's law:

4a � ÿ
����������������
M1=M2

p
:

Therefore a general expression of the separation factor

a is not possible. In order to make all further consider-
ations on a basis of general applicability, the separ-
ation factor should be maintained.

The ¯ux due to pressure di�usion is composed of a
part resulting from the di�usion superimposed on the
bulk ¯uid and a part resulting from the bulk motion

of the ¯uid:

_N
�p�
1, dif � ÿD12

M12 ÿM1

M12

y1
RT
rp� y1� _N

�p�
1, dif � _N

�p�
2, dif �
�20�

_N
�p�
1, dif � ÿD12

c

p

y1m1
1ÿ y1�1� ap�rp with

m1 �
M12 ÿM1

M12
:

�21�

Similar to the ordinary di�usion a separation factor a p

was introduced. It cannot be determined from the Eqs.
(20) and (21). The separation factor for pressure di�u-
sion a p does not have to be equal to the separation

factor of ordinary di�usion a y.
The ¯uxes due to viscous ¯ow, ordinary and press-

ure di�usion can be added. This additivity yields the

following result for the total ¯ux of component 1:

_N1 � _N1, vis � _N
�y�
1, dif � _N

�p�
1, dif �22�

_N1 � ÿy1 k

Z12
crpÿ D12c

1ÿ y1�1� ay�ry1

ÿ D12�c=p�y1m1
1ÿ y1�1� ap�rp �23�

and in case of a y=a p=a

_N1 � ÿy1 k

Z12
crpÿ D12�cry1 � �c=p�y1m1rp�

1ÿ y1�1� a� : �24�

In order to estimate the maximum in¯uence of the

pressure di�usion to the di�usive ¯ux, the following
assumptions shall be made:

m1 � 1 i:e: y1M1 << �1ÿ y1�M2 and ay � ap � a:

Under this assumptions the ratio of the ¯ux due to

pressure di�usion to the ¯ux due to ordinary di�usion
simpli®es to:

_N
�p�
1, dif

_N
�y�
1, dif

� y1rp
pry1 �25�

3 Eqs. (16)±(19): Eq. (16) can also be represented in the way

in which the di�usive convective ¯ux, induced by the di�u-

sion, a viscous ¯ow acc. to Eq. (14) is taken as basis [15]:

_N
�y�
1, dif � ÿD12cry1 ÿDvis�c=p�y1rp

_N
�y�
2, dif � D12cry1 ÿDvis�c=p��1ÿ y1�rp: �19�

On the basis of the relation from Eq. (18)Ða= _N
�y�
2, dif =

_N
�y�
2, dif Ð

we get a relation between the gradient of pressure and concen-

tration consequently to the di�usive convective ¯ux:

�1� a�D12ry1 � �1ÿ y1�1� a��Dvisrp:
When using the correlation in Eq. (54), we will have Eq. (19)

in identical manner. In case of a superposition of the gradient

of total pressure, there will be an additional viscous ¯ow acc.

to Eq. (14), which must be added. The gradient of pressure

due to the di�usive convective ¯ow and due to this additional

¯ow must be added. This type of derivation shows the viscous

character of the di�usive convective ¯ow clearly.
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i.e. in case of an increasing pressure gradient and a
small concentration gradient the contribution of press-
ure di�usion to the di�usive ¯ux is appreciable. In case

of a small pressure gradient it is negligible. Under the
same assumptions the following result is obtained for
the di�usive ¯ux:

_N
�y�
1, dif � _N

�p�
1, dif � ÿD12�cry1 � �c=p�y1rp�: �26�

Only under these assumptions the total di�usive ¯ux
may be derived with the gradient of the partial press-
ure Hp1:

_N1, dif � _N
�y�
1, dif � _N

�p�
1, dif � ÿD12�c=p�rp1: �27�

But in the continuum region the contribution of the
viscous ¯ow to the total ¯ux must be still taken into
account. It is considerably greater than the ¯ux due to

pressure di�usion. Only in the transition region, when
the part of the viscous ¯ow to the total ¯ux decreases,
an appreciable in¯uence of the pressure di�usion is

observed. Indeed a separation of a mixture in a tube
¯ow by pressure di�usion has not yet been observed.
The small but observable in¯uence of pressure di�u-
sion is shown in Fig. 5. The calculated ¯uxes which

take into account the pressure di�usion (solid line), ®t
the measured values better than the calculated ¯uxes

where the pressure di�usion was neglected (dashed
line).

3.2. Knudsen ¯ow

In the free-molecule region (Kn> 1) the Knudsen

¯ow determines the mass transfer [14]. The ¯ux of
component i can be derived from the kinetic theory of
gases4:

_Ni, kn � ÿDkn, i

RT
rpi � ÿDkn, i

RT
� pryi � yirp�

� _N
�y�
i, kn � _N

�p�
i, kn

with i � 1, 2:

�28�

Here the gradient of the partial pressure Hpi is the
driving force. The division of the ¯ux into a part pro-

portional to the pressure gradient Hp, called slip ¯ow,
and into another part proportional to the gradient of
the mole fraction Hyi, called Knudsen di�usion, occurs

in analogous manner with regard to the transport
mechanisms in the continuum regionÐordinary di�u-
sion (0Hyi ), pressure di�usion and viscous ¯ow (0Hp ).
The division is not required but it simpli®es the com-
parison of those ¯uxes that are induced by equivalent
gradients and the estimation which mechanism mainly
in¯uences the mass transfer at a given gradient of con-

centration and pressure.
The e�ective Knudsen coe�cient of component i is:

Dkn, i � Ep

mp, kn

dkn, i with dkn, i � 4

3
�dpore

�������������
RT

2pMi

r
: �29�

The tortuosity mp,kn takes account of the additional re-

Fig. 5. Calculated and observed ¯ows of hydrogen and nitrogen under combined gradients of pressure and concentration.

4 Eq. (28): Within the Knudsen regime, there is no funda-

mental distinction between ¯ow and di�usion as there is in

the continuum region. Here only free-molecular ¯ow

(Knudsen ¯ow) is possible. This leads to the fact, that at a

given gradient of concentration an appreciable gradient of

pressure could be built up in a closed system.
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sistances in pores by path elongation, reversing and
pore geometry. In case of two di�erent gases

(M1$M2) at a uniform pressure in an open system
the following ratio of the ¯uxes can be found:

_N2, kn

_N1, kn

� ÿ
��������
M1

M2

r
: �30�

3.3. Transition region

In the transition region there are gas/gas impacts as
well as gas/wall impacts. The free path of the gas is of

the size of the pore diameter. Mass transfer takes
places due to a gradient of mole fraction by ordinary
di�usion and Knudsen ¯ow and due to a pressure

gradient by pressure di�usion, Knudsen ¯ow and vis-
cous ¯ow. The ¯ux due to a viscous ¯ow may be
added to the di�usive ¯ux [10,16]:

_N1 � _N1, D � _N1, vis �31�

3.3.1. Mass transport in the transition region at a

uniform pressure
The combination of ordinary di�usion and Knudsen

¯ow shall be derived at a uniform total pressure in an

open system. In an open system both end faces of the
cylindrical sample are continuously swept by gases at
uniform pressure. The method is to consider a momen-

tum balance on species i, which includes momentum
transferred by i to the wall as well as to other mol-
ecules in the gas phase. The partial pressure di�erence
expressed as momentum loss between the end of a

capillary for a given component is considered to be the
sum of the momentum transferred to the wall plus the
momentum transferred to other molecules:

rp1 � rp1 jwall �rp1 jmolecule : �32�
For better comprehension an electric analogous circuit
comprising two resistors in series shall be introduced

[10], Fig. 6. The di�usive ¯uxes _N
� y�
1,kn and _N

� y�
1,dif are

identical. They shall be designated _N
� y�
1,D. In a binary

gas mixture we obtain the following expression for the
di�usive ¯ux of the component 1

_N
�y�
1, D � ÿ

�
1

D12
� 1

Dkn, 1

�ÿ1
cry1

� y1Dkn, 1

Dkn, 1 �D12
� _N
�y�
1, D � _N

�y�
2, D�: �33�

In case of equimolar di�usion (M1=M2) the di�usive
¯uxes are of equal magnitude but oppositely directed

(a=ÿ1). We get the Bosanquest formulation of the
di�usion coe�cient in the transition region [18].
However we must generally suppose that in a mixture,
which is composed of species with di�erent molecular

weights (M1$M2), a non-equimolar countercurrent
di�usion occurs. The di�usive ¯ux of component 2
may be derived in the same manner as Eq. (33) by

exchanging of the indices 1 with 2 and 2 with 1. The
two independent equations permit the calculation of
the di�usive ¯ux of component 1:

_N
�y�
1, D � ÿ

 
1ÿ y1�1ÿ

����������������
M1=M2

p
�

D12
� 1

Dkn, 1

!ÿ1
cry1: �34�

The di�usive ¯ux of component 2 is calculated corre-
spondingly. The ratio of the two ¯uxes obeys the
inverse square root molecular weight relationship:

_N
�y�
2, D

_N
�y�
1, D

� ÿ
��������
M1

M2

r
� ay �35�

This ratio maintains over the entire pressure range

from pure Knudsen to pure molecular di�usion. In
order to obtain a general applicable statement of the
di�usive ¯ux in the transition region, Eq. (34) may be

written as5:

_N
�y�
1, D � ÿ

�
1ÿ y1�1� ay�

D12
� 1

Dkn, 1

�ÿ1
cry1: �36�

In the limiting case of low pressure or small pore radii
(Kn>>1; D12>>Dkn,i) Eq. (36) changes over to Eq. (28).
At high pressure or great pore radii (Kn<<1;
D12<<Dkn,i) the ¯ux of component 1 due to a mole
fraction is described by the following equation:

_N
�y�
1, D �

ÿD12

1ÿ y1�1ÿ
����������������
M1=M2

p �cry1: �37�

This equation di�ers from Eq. (19), which described

Fig. 6. Electrical analogue circuit according to [10] at Hp= 0.

5 Eq. (36): The derivation in the Eqs. (32) to (34) may be

compared with an electrical analogy of a serial connection of

two resistors, Fig. 6. In analogy to an electric current I: 1/

I= 1/I1 + 1/I2, we ®nd: 1/N
. (y)
1,D=1/N

. (y)
1,dif+1/N

. (y)
1,kn, where

the currents, resp. ¯ows induced by the global driving poten-

tials. For reasons of clari®cation of the physical relation the

more detailed derivation above was chosen.
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the di�usive ¯ux of component 1 in the continuum
region, in the way that the separation factor can be

directly calculated without any additional assumption.
Various measurements con®rm the inverse square root
molecular weight relationship of a y, Eq. (35), in the

entire pressure range from pure Knudsen to pure mol-
ecular di�usion [17±22]. The relationship is theoreti-
cally veri®ed, too [23]. In 1829 Thomas Graham was

the ®rst who discovered the inverse square root mol-
ecular weight relationship of the di�usive ¯uxes in the
continuum region by experiment. Therefore the ratio

of the di�usive ¯uxes is designated Graham's law.
The mass average velocity v di�ers in the limiting

case Kn<<1 from zero6):

rn � _m1 � _m2 � _N
�y�
1, DM1 � _N

�y�
2, DM2

� D12

�������
M1

p
�
�������
M2

p
ÿ

�������
M1

p
�

1ÿ y1�1ÿ
����������������
M1=M2

p
�
cry1: �38�

Despite a constant total pressure (Hp = 0) a measur-
able ¯ow exists. It was observed in porous bodies as
well as in capillaries [20]. This phenomena is called dif-

fusive slip [24]. The mass ¯ux due to di�usive slip tends
towards the concentration gradient of the heavier gas
component.

In steady state the ¯ux of component 1 can be calcu-
lated by integration of Eq. (36):

_N
�y�
1, D �

D12c

�1� ay�L

ln

�
1ÿ y1, a�1� ay� �D12=Dkn, 1

1ÿ y1, e�1� ay� �D12=Dkn, 1

�
: �39�

For analysing and evaluation of the di�usion measure-

ments an e�ective di�usion coe�cient De shall be
introduced:

_N
�y�
1, D � ÿDecry1 � y1� _N

�y�
1, D � _N

�y�
2, D�

� ÿDecry1 � y1�1� ay� _N
�y�
1, D: �40�

The e�ective di�usion coe�cient is the same for both
components. Under steady-state conditions we get:

_N
�y�
1, D �

Dec

�1� ay�L ln

�
1ÿ y1, a�1� ay�
1ÿ y1, e�1� ay�

�
: �41�

The theoretical value of the e�ective di�usion coef-
®cient can be calculated from Eqs. (39) and (41):

De � D12

�
ln

�
1ÿ y1, a�1� ay�
1ÿ y1, e�1� ay�

��ÿ1
ln

�
1ÿ y1, a�1� ay� �D12=Dkn, 1

1ÿ y1, e�1� ay� �D12=Dkn, 1

�
:

�42�

Fig. 7. Measured di�usion ¯ows (*, w) and approximation with the theoretical value for the molecular ¯ow ratio according to

Graham's law.

6 Eq. (38): If m
.
1=ÿm. 2, i.e. a=ÿM1/M2, there would be no

di�usion slip. Therefore Graham's law a � ÿ
�����������������
M1=M2

p
is a

direct consequence of the di�usion slip.
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The binary di�usion coe�cient may be obtained from

Eq. (39) and measurements at high pressure, the

Knudsen coe�cient from measurements at low press-

ure. Then the e�ective di�usion coe�cient may be cal-

culated by Eq. (42). This requires the variation of the
total pressure over several orders of magnitude. In the

experimental apparatus described in [3] di�usion

measurements were carried out with hydrogen and

nitrogen as nonadsorbing gases at total pressures from

1.2 to 10.0 bar. Rock salt cores were employed as po-

rous samples. The Knudsen coe�cient was obtained

from permeability measurements. Under the knowledge

of the Knudsen coe�cient only a single di�usion ex-

periment at constant pressure is necessary to determine

the binary di�usion coe�cient. If several di�usion

measurements at several total pressures were carried

out, the binary di�usion coe�cient may be determined

from an approximation function. In the function
_N1,D= f ( p ), Eq. (39), the pressure independent value

D12 p is chosen in the way that calculation well ®ts

measurement. Fig. 7 shows the measured di�usion

¯uxes of hydrogen and nitrogen through a porous salt

core. Under the assumption of Graham's law the cal-

culated di�usive ¯uxes of hydrogen and nitrogen well

®t the measured values. With increasing total pressure
the di�usive ¯ux varies only weakly. The mass trans-

port mainly occurs due to ordinary di�usion in the

continuum region. At low gas pressure the mass trans-

fer takes place due to Knudsen ¯ow. Here the ¯ux is

directly proportional to the pressure. Fig. 8 shows the

calculated and measured e�ective di�usion coe�cient

multiplied by the total pressure. At high pressure the

e�ective di�usion coe�cient De turns into the binary

di�usion coe�cient D12. It behaves reciprocally to the
total pressure. Therefore at small Knudsen numbers
the e�ective di�usion coe�cient multiplied by the total

pressure Dep is a constant value.

3.3.2. Mass transport in the transition region under

combined gradients of concentration and pressure
If additionally to the concentration gradient Hyi a

pressure gradient Hp is imposed on the porous
medium, a ¯ux due to viscous ¯ow, slip ¯ow and

pressure di�usion will occur. Hence the total ¯ux has
to be a combination of:

viscous flow _Ni, vis � ÿDvis�c=p�yirp; Dvis � kp=Z

ordinary diffusion _N
�y�
i, dif � ÿD12cryi � yiS _N

�y�
j, dif

pressure diffusion _N
�p�
i, dif � ÿD12�c=p�miyirp� yiS _N

�p�
j, dif

Knudsen flow _Ni, kn � ÿDkn, i�c=p�rpi:

The ¯ux due to viscous ¯ow may be added to the dif-

fusive ¯ux (compare Eq. (31)). Several possibilities
exist in order to combine the di�usive ¯uxes caused by
di�erent gradientsÐHyi, Hp, Hpi.

3.3.2.1. (a) Maximum in¯uence of pressure di�usion,
mi=1. As shown above the pressure di�usion has to be

only taken into account in the transition region. The
contribution of the pressure di�usion is small com-
pared to the ¯uxes due to ordinary di�usion and vis-

Fig. 8. E�ective di�usion coe�cient De multiplied by the global pressure.
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cous ¯ow. Therefore it is allowed to assume mi=1 for
every component in the gas mixture in order to take

account of a maximum value of the pressure di�usion.
This agrees to the Dusty-Gas model under the assump-
tion that all external forces, including the clamping

force, which act on the dust particles in the porous
medium, must be equal to the drag force due to vis-
cous ¯ow. Hence the e�ect of mi is suppressed.
Under this assumption the gradient of the partial

pressure is the driving force of the sum of ordinary
and pressure di�usion. In that case the combination of

di�usion and Knudsen ¯ow shall be calculated as
shown in the scheme of Eqs. (32)±(34). We obtain the
Stefan±Maxwell form of the di�usion equation in the
transition region [25]:

rp1 � pry1 � y1rp

� ÿ1
D12c=p

f�1ÿ y1� _N1, D ÿ y1 _N1, Dg

ÿ 1

Dkn, 1c=p
_N1, D: �43�

In comparison with the upper considered case, here the

gradient of pressure is not zero. After some algebra we
obtain the following result for the di�usive ¯ux of
component 1:

_N1, D � ÿ
 
1ÿ y1�1ÿ

����������������
M1=M2

p �
D12

� 1

Dkn, 1

!ÿ1�
cry1 �

�
1� Dkn, 2

D12

�
c

p
y1rp

�
: �44�

In Eq. (44) the ®rst term on the right side (0Hy1) may
be considered as a combination of ordinary di�usion
and Knudsen di�usion, the second term (0Hp ) as a

combination of pressure di�usion and slip ¯ow. The
equation satis®es the limiting cases in the continuum

and in the Knudsen region. In the Knudsen region the
Knudsen coe�cient is considerably smaller than the
binary di�usion coe�cient (Dkn,i<<D12), whereas in

the continuum region the ¯ux due to pressure di�usion
is small compared to the viscous ¯ux (D12<<Dvis). In a
binary gas mixture, which consists of species with the

same molecular weights (M1=M2), there is no pressure
di�usion. Under this condition the combination of vis-
cous ¯ow and Knudsen ¯ow reduces to the following

expression:

_N
�p�
i � ÿ�Dvis �Dkn, i �yi�c=p�rp:

However the physical meaning of the factor (1+Dkn,2/
D12) in the ¯ux of component 1 is di�cult to explain.

It has to vanish in the continuum region. The dis-
crepancy arises due to the derivation of Eq. (44) by the
assumption of mi=1; i= 1, 2. The assumption was

made in order to enable the addition of the partial
pressure drops due to molecule±wall collisions Hpivwall
and molecule±molecule collisions Hpivmolecule. This is

not correct because the de®nition of mi (Eq. (21)) leads
to y1m1=ÿ(1ÿy1)m2.

3.3.2.2. (b) Extended analogous modelÐdi�usive ¯ows

in parallel connection. The ¯uxes due to ordinary and
pressure di�usion with regard to the factor mi are
directly added (parallel connected) as shown in the

Fig. 9. In consideration of the Eqs. (19) and (21) we
obtain:

_Ni, dif � _N
�y�
i, dif � _N

�p�
i, dif

� ÿD12�cryi � �c=p�miyirp
1ÿ yi�1� a� :

Fig. 9. Extended analogous modelÐdi�usion ¯uxes in parallel connection.
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The ¯ux due to Knudsen ¯ow may be calculated by
Eq. (28):

_Ni, kn � ÿDkn, i

RT
rpi:

The di�usive ¯uxes N
.
i,dif and N

.
i,kn shall connect in

series as shown in the sketched model, Fig. 9. The
combination of the di�usive ¯uxes leads to the follow-
ing result (see footnote 5):

1

_Ni, D

� 1

_Ni, dif

� 1

_Ni, kn

: �45�

In a binary gas mixture we obtain the following ex-
pression for the ¯ux of component 1:

_N1, D �ÿ
�

1ÿ y1�1� a�
D12�cry1 � �c=p�m1y1rp�

� 1

Dkn, 1�cry1 � �c=p�y1rp�
�ÿ1

�46�

and the ¯ux of component 2, respectively:

_N2, D � ÿ
�

1ÿ �1ÿ y1��1� 1=a�
D12�ÿcry1 � �c=p�m2�1ÿ y1�rp�

� 1

Dkn, 2�ÿcry1 � �c=p��1ÿ y1�rp�
�ÿ1

: �47�

The separation factor a � _N2,D= _N1,D can be calculated
by means of the two equations. The following relations
are helpful:

m1y1 � ÿm2�1ÿ y1�

1ÿ �1ÿ y1��1� 1=a� � ÿ�1ÿ y1�1� a��=a

pÿ1rp1 � ry1 � y1p
ÿ1rp

pÿ1rp2 � ÿry1 � �1ÿ y1�pÿ1rp:

We obtain the following expression for the separation

factor

a � Dkn, 2

Dkn, 1

rp2
rp1

� ÿ
��������
M1

M2

r
pry1 ÿ �1ÿ y1�rp

pry1 � y1rp : �48�

In the case of a vanishing pressure gradient (Hp = 0)

Eq. (48) changes over to Graham's law (Eq. (35)). In
order to consider the limiting cases, model (b) should
be written in the Stefan±Maxwell form:

1

D12c
f�1ÿ y1� _N1, D ÿ y1 _N2, Dg �

_N1, D

Dkn, 1c
�

ÿ
�
1ÿ y1�1� a�

D12
� 1

Dkn, 1

��
1ÿ y1�1� a�

D12�ry1 � m1y1pÿ1rp�

� 1

Dkn, 1�ry1 � y1pÿ1rp�
�ÿ1

: �49�

Model (b) describes the mass transfer in the both limit-
ing casesÐKnudsen region (Dkn<<D12) and continuum

region (Dkn>>D12)Ðexactly. In the continuum region
the driving forces areÐ(Hyi+miyi/pHpi ); in the
Knudsen region the driving force is the partial pressure
of each componentÐ(Hyi+yi/pHpi )=ÿ1/pHpi. The

di�erence between the two driving forces is only small
but of fundamentally physical importance. In the
continuum region a pressure di�usion 0miyi=prpi can
superimpose the ordinary di�usion. The pressure
di�usion is the consequence of the di�erence between
the molar-average velocity and the mass-average vel-

ocity of each species miyi � yi ÿ oi with oi � ri=r.
Model (b) Eq. (49) describes the transition region
between the continuum and the Knudsen region.

Fig. 10. Extended analogous modelÐdi�usion ¯uxes in serial connection.
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3.3.2.3. (c) Extended analogous modelÐdi�usive ¯uxes
in serial connection. It is possible to connect the

di�usive ¯uxes in a manner as sketched in Fig. 10. The

serial connection of ordinary di�usion _N
� y�
1,dif and

Knudsen di�usion _N
� y�
1,kn to a ¯ux _N

� y�
1,D and pressure

di�usion _N
� p�
1,dif and slip ¯ow _N

� p�
1,kn to a ¯ux _N

� p�
1,D yields

the following result7:

_N
�y�
1, D �ÿ

�
1ÿ y1�1� ay�

D12
� 1

Dkn, 1

�ÿ1
cry1

ÿ
�
1ÿ y1�1� ap�

D12m1
� 1

Dkn, 1

�ÿ1
�c=p�y1rp

_N
�y�
2, D �

�
1ÿ �1ÿ y1��1� 1=ay�

D12
� 1

Dkn, 2

�ÿ1
cry1

ÿ
�
1ÿ �1ÿ y1��1� 1=ap�

D12m2
� 1

Dkn, 2

�ÿ1
� �c=p��1ÿ y1�rp: �50�

In these equations two separation factors have to be

distinguished8:

_N
�y�
2, D

_N
�y�
1, D

�ay � ÿ
��������
M1

M2

r
;

_N
�p�
2, D

_N
�p�
1, D

� ap �

�ÿm1
m2

��������
M1

M2

r
� ÿM12 ÿM1

M12 ÿM2

��������
M1

M2

r
: �51�

In order to consider the limiting cases, model (c)

should be written in the Stefan±Maxwell form:

1

D12c
f�1ÿ y1� _N1, D ÿ y1 _N2, Dg �

_N1, D

Dkn, 1c
�

ÿ Dkn, 1�1ÿ y1�1� ap�� �D12

Dkn, 1�1ÿ y1�1� ap�� � m1D12
m1y1p

ÿ1rpÿ ry1:
�52�

The mass transfer in the both limiting casesÐKnudsen

and continuum regionÐis exactly described by model

(c) and also by model (b).
The three presented models (a), (b) and (c) are iden-

tical in the case of isobaric counterdi�usion (Hp = 0).
In the Knudsen regime (Dkn<<D12) they describe the
mass transfer for all gradients of pressure exactly, too.

However in the limiting case Dkn>>D12Ðcontinuum
regimeÐthe three models di�er in the separation fac-
tor a. The essential di�erence between the models is

the treatment of the pressure di�usion. The pressure
di�usion is only observed in the transition region.
Hence the discussion of this question is secondary.

Nevertheless it is a fundamental question. More im-
portant is the question, which gradient is the driving
force of ordinary di�usion. Only in the case of a
binary gas mixture, which consists of species with the

same molecular weights (mi=1), the gradient of the
partial pressure Hpi is the driving force. In general the
driving force of ordinary di�usion is the gradient of

the mole fraction Hyi. It is superposed by a pressure
di�usion in the transition region, which obeys the
gradient 0miHpi. This should be taken into account on

the left side of the Maxwell's Eq. (43).

3.3.3. Comparison of the transport coe�cients
In order to evaluate which transport mechanisms

predominate under simultaneously existing gradients of
mole fraction and pressure, a comparison of the trans-

port coe�cient is often su�cient, Fig 11. For this pur-
pose the pressure di�usion shall be neglected. This is
not only justi®ed for large pore diameters, but also, as

shown above, for a lot of binary gas mixtures, which
consist of species with nearly the same molecular
weights. Hence the transport due to a pressure gradient

takes place by viscous ¯ow and Knudsen ¯ow. They
are added directly.
For the double-logarithmic application of the trans-

port coe�cients vs the pore radius Rpore, the per-

meability coe�cient Dvis is drawn as a straight line
with the slope 2, the Knudsen coe�cient as a straight
line with the slope 1. The di�usion coe�cient, here cal-

culated on the basis of the Bosanquet formulation,
changes over from the Knudsen coe�cient to the
binary di�usion coe�cient with increasing pore radius.

The binary di�usion coe�cient D12 is independent of
the pore radius and behaves reciprocally to the press-
ure. The Knudsen coe�cient is independent of the gas

7 As shown in footnote (3) a viscous ¯ow can substitute the

di�usive convective ¯ow of ordinary di�usion. If we calculate

here in the same way due to the ordinary and pressure di�u-

sion:

y1� _N
�y�
1, dif � _N

�y�
2, dif � _N

�p�
1, dif � _N

�y�
2, dif � � ÿDvis�c=p�y1rp

we obtain

_N1, dif � ÿ D12c

1ÿ y1�1� ay�ry1 ÿ
D12�c=p�y1m1
1ÿ y1�1� ap�rp:

The separation factors a y and a p are unknown and must be

calculated by further considerations. The form of the above

derived equation is con®rmed to Eq. (50).
8 In case of consideration of the limiting case m1=m2 the

mean molecular weight M12 is considered as a constant value

and the molecular weights M1 and M2 as variables. If M12 is

also considered as a function of the molecular weights of the

single species M1 and M2 (M12=f(M1, M2)), we obtain
_N1,D02D12. This is physically meaningless.
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pressure and the permeability coe�cient behaves pro-

portionally to the pressure.

If porous media possess large pores (Rpore 1 10ÿ5

m), only a small gradient of pressure will be necessary

for the ¯ux due to viscous ¯ow to predominate the

¯ux due to Fick's di�usion (Dvis<<D12). With decreas-

ing pore radii an increasing gradient of pressure must

be imposed on the porous medium, so that the ¯ux

induced by a gradient of pressure predominates the dif-

fusive ¯ux. With decreasing pore radius the Knudsen

coe�cient is the transport coe�cient, which determines

the ¯ux due to a gradient of pressure. It takes a greater

value than the permeability coe�cient. The reason is

its simple dependence on the pore radius (Dkn0Rpore)

in comparison to the square dependence of the per-

meability coe�cient on the pore radius (Dvis0R 2
pore).

With decreasing pore radius the binary di�usion

coe�cient changes over to the Knudsen coe�cient.

Hence in a porous medium with very small pores there

is no distinction between a ¯ux due to a gradient of

pressure and concentration.

When comparing the transport coe�cients we can

see, that for the mass transfer due to a gradient of

pressure the transition from the continuum region to

the Knudsen region takes place at larger pores than

for the di�usion. In case of a Knudsen number of

Kn 1 1/13 the parts of viscous and slip ¯ow are of the

same magnitude. By using hydrogen at an absolute

pressure of 1 bar and a porous medium with pore radii

of Rpore 1 8 � 10ÿ7 m the Knudsen coe�cient takes

the same value as the permeability coe�cient. Only

for a pore radius of Rpore 1 6 � 10ÿ8 m the binary

di�usion coe�cient and the Knudsen coe�cient have

approximately the same value.

3.4. Non-steady di�usion measurements

The goal of the nonsteady-state di�usion measure-

ments is the determination of the accessible porosity.
The accessible porosity obtained by the nonsteady-
state di�usion measurements may be compared with

the accessible porosity obtained by the nonsteady-state
permeability measurements. They should be equal. At
the beginning of the experiment the void space inside
the porous medium is entirely saturated with nitrogen.

Until t= 0 both end faces of the sample are swept
with nitrogen at uniform and equal pressure. From
tr0 one end face of the sample (z = 0) is swept with

hydrogen instead of nitrogen and the other end face
(z=L ) is still swept with nitrogen at the same total
pressure (Hp = 0). After some time a slowly increasing

hydrogen concentration can be measured in the nitro-
gen stream (z=L ).
For the determination of the accessible porosity the

equations of continuity for the both species 1 and 2
have to be solved within the sample (0 < z< L ):

Ea
@ci
@ t
� Ea

�
yi
@c

@ t
� c

@yi
@ t

�
� ÿr _Ni with

_Ni � _Ni, D � _Ni, vis, i � 1, 2

�53�

with the following boundary conditions:

y1�z � 0, tr0� � y1, e � 1

p�z � 0, tr0� � pe

y1�z � L, tr0� � y1, a � 0

Fig. 11. Transport coe�cients of hydrogen depending on the pore radius and on the total pressure in a capillary tube at 218C.
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p�z � L, tr0� � pa � pe:

The ¯uxes of both the species 1 and 2 are calculated

by the Eq. (31) and (44), where the three transport
coe�cients are already known from the steady-state
experiments. In Eq. (53) the accessible porosity
remains as the only unknown. The accessible porosity

is chosen in the way that calculation (solid curve) well
®ts the measured data (symbols), Fig. 12. In the ®gure
the ¯uxes of hydrogen through the sample are drawn

as a function of time at di�erent total pressures (1.2
bar and 2.4 bar). Under the chosen conditions
( pe=pa) the gradient of pressure Hp within the sample

will be very small and the three models (a), (b) and (c)
are equivalent. A distinction is not necessary.
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